Changes for page Mission Director Guide

Last modified by Klaus Meyer on 2025/03/31 16:39

From version 32970.3
edited by Owen Lake
on 2023/10/10 15:45
Change comment: There is no comment for this version
To version 32942.1
edited by Daniel Turner
on 2023/08/22 17:14
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -Mission Director Guide
1 +X4:X4 Documentation/X4 Game Design/0 General/Mission Director Guide
Parent
... ... @@ -1,1 +1,0 @@
1 -X Rebirth Wiki.Modding support.WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -xwiki:XWiki.Owen
1 +xwiki:XWiki.Daniel
Content
... ... @@ -1,13 +1,12 @@
1 -The Mission Director (MD) is a subsystem of the game and interprets mission scripts, which are written in an XML-based language. The Mission Director in X Rebirth and X4 is based on the MD in X3: Terran Conflict, with some major changes based on feedback from MD users.
1 +The Mission Director (MD) is a subsystem of the game and interprets mission scripts, which are written in an XML-based language. The Mission Director in X Rebirth and X4 is based on the MD in X3: Terran Conflict, with some major changes based on feedback from MD users.\\
2 2  
3 -An introduction to the original MD can be found in the [[Egosoft forums>>url:http://forum.egosoft.com/viewtopic.php?t=196971]]. There is also a PDF guide for the X3 Mission Director, which is partially used as a template for this document.
3 +An introduction to the original MD can be found in the[[(% style="color: rgb(0,0,153);text-decoration: underline;" %)Egosoft forums>>url:http://forum.egosoft.com/viewtopic.php?t=196971]](%%). There is also a PDF guide for the X3 Mission Director, which is partially used as a template for this document.
4 4  
5 5  This document is primarily supposed to be a guide for MD users (people who use the MD to develop missions or write other MD scripts), not for MD programmers (people who work on the MD engine in C++).
6 6  
7 -{{info}}
8 -The general MD scripting system is the same in XR and X4, so this guide applies to both games. However, each game has its own set of supported script features (i.e. actions, conditions and properties), so in general scripts from different games are not compatible.
9 -{{/info}}
7 +{{{The general MD scripting system is the same in XR and X4, so this guide applies to both games. However, each game has its own set of supported script features (i.e. actions, conditions and properties), so in general scripts from different games are not compatible.}}}
10 10  
9 +(% id="md-scripts" %)
11 11  
12 12  {{toc/}}
13 13  
... ... @@ -15,14 +15,14 @@
15 15  
16 16  MD scripts are not necessarily missions. An MD file can contain a part of a mission, multiple missions, or no mission at all, as the MD is used for more than just missions.
17 17  
18 -MD files are XML files located in the game folder **md**. All XML files in that folder are loaded at game start. The file names are irrelevant, since the internally used script names are read from the XML root nodes. However, it's recommended to keep file name and internal script name identical to avoid having to look up the names.
17 +MD files are XML files located in the game folder {{code}}md{{/code}}. All XML files in that folder are loaded at game start. The file names are irrelevant, since the internally used script names are read from the XML root nodes. However, itΓÇÖs recommended to keep file name and internal script name identical to avoid having to look up the names.
19 19  
20 -To edit MD scripts, an XML editing tool is needed. Microsoft Visual Studio (if available) or [[Microsoft Visual Web Developer>>url:http://www.microsoft.com/express/vwd/]] (for free) are highly recommended because they have pretty good support for XML schemas (XSD). The provided Mission Director schema files help you create the XML file by displaying all available tags and attributes as you edit the XML.
19 +To edit MD scripts, an XML editing tool is needed. Microsoft Visual Studio (if available) or [[(% style="color: rgb(0,0,153);text-decoration: underline;" %)Microsoft Visual Web Developer>>url:http://www.microsoft.com/express/vwd/]](%%) (for free) are highly recommended because they have pretty good support for XML schemas (XSD). The provided Mission Director schema files help you create the XML file by displaying all available tags and attributes as you edit the XML.
21 21  
22 22  This functionality is only available if the schema files **md.xsd** and **common.xsd** are in the correct folder. If you are editing the XML in the game folder directly, all is well and the files are loaded from the libraries folder. However, if you are editing in a separate folder, copy those XSD files from the libraries folder directly into the folder where your XML files are located.
23 23  
24 24  {{info}}
25 -Even if your script is free of XSD errors, that does not mean that the script syntax is correct. For example, there are XML elements that require at least one of multiple attributes, but this requirement cannot be reflected in a schema (apart from documentation text). Please notice the XSD documentation of the elements and attributes, e.g. displayed via tooltips in Visual Studio / Visual Web Developer. Please also note additional requirements for MD cue attributes in this guide (see [[Conditions>>doc:||anchor="HConditions" style="outline-width: 0px !important; user-select: auto !important;"]]).
24 +Even if your script is free of XSD errors, that does not mean that the script syntax is correct. For example, there are XML elements that require at least one of multiple attributes, but this requirement cannot be reflected in a schema (apart from documentation text). Please notice the XSD documentation of the elements and attributes, e.g. displayed via tooltips in Visual Studio / Visual Web Developer. Please also note additional requirements for MD cue attributes in this guide (see [[NULL|Conditions]]).
26 26  
27 27  To check for errors, please pay attention to in-game error messages that are produced while your script is imported, and run-time errors while the script runs. The XSD files can help you a lot, but you should not rely on the absence of XSD errors."
28 28  {{/info}}
... ... @@ -33,19 +33,15 @@
33 33  
34 34  To collect all messages in a file, start the game with the following parameters on the command line:
35 35  
36 -{{code language="xml"}}
37 --logfile debuglog.txt
38 -{{/code}}
35 +{{code}}-logfile debuglog.txt{{/code}}
39 39  
40 40  All messages, including enabled non-error messages, will be written into the log file. You can find it in your personal folder, where your save folder is located. To enable scripting-specific debug messages, add the following to the command line:
41 41  
42 -{{code language="xml"}}
43 --debug scripts
44 -{{/code}}
39 +{{code}}-debug scripts{{/code}}
45 45  
46 -Other debug filters other than "scripts" can be enabled by repeating the -debug command for each filter name, but that is rarely needed for scripting.
41 +Other debug filters other than "scripts" can be enabled by repeating the -debug command for each filter name, but that is rarely needed for scripting.\\
47 47  
48 -The script action <debug_text> can be used to print debug messages from within a script.
43 +The script action <debug_text> can be used to print debug messages from within a script.\\
49 49  
50 50  = MD script structure =
51 51  
... ... @@ -58,7 +58,7 @@
58 58  <mdscript name="ScriptName" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="md.xsd">
59 59  {{/code}}
60 60  
61 -"ScriptName" is the name used for this script regardless of the file name. It **has to start with an upper case letter and must be unique** among all MD script names. It also should not contain spaces, so other MD scripts can use it as an identifier to access this script's contents easily.
56 +"ScriptName" is the name used for this script regardless of the file name. It **has to start with an upper case letter and must be unique** among all MD script names. It also should not contain spaces, so other MD scripts can use it as an identifier to access this scriptΓÇÖs contents easily.
62 62  
63 63  The only allowed sub-node of <mdscript> is <cues>, which can only contain <cue> sub-nodes:
64 64  
... ... @@ -82,15 +82,17 @@
82 82  
83 83  * **Disabled**: The parent cue has not become active yet, so this cue is basically non-existing.
84 84  * **Waiting**: Either this is a root cue, or the parent has become active. The cue is checking its conditions and will become active when they are met.
85 -* **Active**: The cue is about to perform the actions. Child cues have entered the waiting state.
80 +* **Active**: The cue is about to perform the actions. Child cues have entered the waiting state.\\
86 86  
82 +
83 +
87 87  * **Complete**: The cue has finished performing its actions.
88 88  * **Cancelled**: The cue has been cancelled. This state cannot normally be reached but only if a cue actively cancels itself or another cue. No condition checks or actions are performed in this cue or any sub-(sub-)cue.
89 89  
90 -{{info}}
91 -There can be a delay between the activation and performing the actions if the <delay> tag is used. In this case, sub-cues will be enter the waiting state before the parent's actions are performed.
92 -{{/info}}
87 +\\
93 93  
89 +{{info}}There can be a delay between the activation and performing the actions if the <delay> tag is used. In this case, sub-cues will be enter the waiting state before the parent's actions are performed.{{/info}}
90 +
94 94  This is how a cue node looks like:
95 95  
96 96  {{code language="xml"}}
... ... @@ -153,12 +153,14 @@
153 153  
154 154  If a cue has a <conditions> node without any event, it must have one of the attributes //**onfail**// or //**checkinterval**//.
155 155  
156 -* Use //onfail// if the conditions should be checked only once. The possible attribute values are "//cancel//" and "//complete//". If the conditions are met, the cue will activate and perform the cue actions. Otherwise it's a failure and the cue will be cancelled or completed, based on the onfail attribute. Typically //onfail="cancel"// is used to prevent any further action. //onfail="complete"// can be used to continue with the sub-cues even in case of failure (but skipping the current cue actions).
153 +* Use //onfail// if the conditions should be checked only once. The possible attribute values are "//cancel//" and "//complete//". If the conditions are met, the cue will activate and perform the cue actions. Otherwise it's a failure and the cue will be cancelled or completed, based on the onfail attribute. Typically //onfail="cancel"// is used to prevent any further action. //onfail="complete"// can be used to continue with the sub-cues even in case of failure (but skipping the current cue actions).\\
157 157  
158 -* With //checkinterval//, you can specify a constant time interval between condition checks. The conditions will be checked regularly forever until they are met, unless the cue's state is changed explicitly by an external event.
159 159  
160 -Additionally, you can use the attribute **checktime** to set the time of the first condition check (also possible in combination with //onfail//). The //checktime// can be an expression with variables and is evaluated when the cue is enabled (when the condition checks would normally start - for root cues that happens at game start, otherwise after the parent cue becomes active).
161 161  
157 +* With //checkinterval//, you can specify a constant time interval between condition checks. The conditions will be checked regularly forever until they are met, unless the cueΓÇÖs state is changed explicitly by an external event.
158 +
159 +Additionally, you can use the attribute **checktime** to set the time of the first condition check (also possible in combination with //onfail//). The //checktime// can be an expression with variables and is evaluated when the cue is enabled (when the condition checks would normally start ΓÇô for root cues that happens at game start, otherwise after the parent cue becomes active).
160 +
162 162  Examples:
163 163  
164 164  Check conditions every 5 seconds, but start checking only 1 hour after game start.
... ... @@ -181,11 +181,10 @@
181 181  
182 182  The attributes //onfail//, //checkinterval//, //checktime// are not allowed for cues with event conditions.
183 183  
184 -{{info}}
185 -**Reminder**
186 -When using an XSD-capable editor, it's a great help, but you cannot rely on that alone to verify correctness. Please also check the documentation and look for errors in the game debug output. Concretely, the schema cannot tell whether the above cue attributes are used correctly.
187 -{{/info}}
188 188  
184 +
185 +{{info}}Reminder: When using an XSD-capable editor, it's a great help, but you cannot rely on that alone to verify correctness. Please also check the documentation and look for errors in the game debug output. Concretely, the schema cannot tell whether the above cue attributes are used correctly.{{/info}}
186 +
189 189  == Actions ==
190 190  
191 191  The <actions> node contains the actions that are performed one after another, without any delay inbetween. You can enforce a delay after activation of the cue and actual action performance, using a <delay> node right before the <actions>:
... ... @@ -200,7 +200,7 @@
200 200  <event_cue_completed cue="parent"/>
201 201  {{/code}}
202 202  
203 -<actions> is optional. Leaving it out may be useful if you only want to enable sub-cues after the cue's condition check. The state transition from active to complete will still take the <delay> node into account.
201 +<actions> is optional. Leaving it out may be useful if you only want to enable sub-cues after the cueΓÇÖs condition check. The state transition from active to complete will still take the <delay> node into account.
204 204  
205 205  Note that the MD script language is not designed as a programming language. The actions are performed in sequence, although they can be nested to form more complex structures. Loops and conditionals exist to some extent, but not necessarily in the sense that a programmer might expect. Analogously to <check_all> and <check_any>, you can use **<do_all>** to perform all the contained sub-node actions, and **<do_any>** to perform only one of them. <do_all> is particularly useful when nested in a <do_any>.
206 206  
... ... @@ -216,12 +216,12 @@
216 216  <actions>
217 217  {{/code}}
218 218  
219 -{{info}}
220 -Messages printed with <debug_text> are usually only visible when the "scripts" debug filter is enabled, see [[Script debug output>>doc:||anchor="HScriptdebugoutput"]]
221 -{{/info}}
222 222  
223 -Script debug output
224 224  
219 +{{info}}Messages printed with <debug_text> are usually only visible when the "scripts" debug filter is enabled, see [[NULL|Script debug output]].{{/info}}
220 +
221 +
222 +
225 225  Each child action in a <do_any> node can have a //**weight**// attribute, which can be used to control the random selection of an action node. The default weight of a child node is 1.
226 226  
227 227  Also available is **<do_if>**, which completes the enclosed action(s) only if one provided value is non-null or matches another. Directly after a <do_if> node, you can add one or more **<do_elseif>** nodes to perform additional checks only in case the previous conditions were not met. The node **<do_else>** can be used directly after a <do_if> or a <do_elseif>. It is executed only if none of the conditions are met.
... ... @@ -234,11 +234,10 @@
234 234  
235 235  Libraries are cues which are not created directly but only serve as templates for other cues. This allows for modularisation, so you can re-use library cues in many different missions.
236 236  
237 -{{info}}
238 -The syntax of libraries is considerably different from the syntax in the MD of X3TC.
239 -{{/info}}
235 +{{info}}The syntax of libraries is considerably different from the syntax in the MD of X3TC.{{/info}}
240 240  
241 241  
238 +
242 242  Library cues are written like normal cues, they are also defined in a <cues> node, just with the difference that the XML tag is called library instead of cue:
243 243  
244 244  {{code language="xml"}}
... ... @@ -248,7 +248,7 @@
248 248  </library>
249 249  {{/code}}
250 250  
251 -Although it is called library, it's basically just a cue that doesn't do anything. You can mix cues and libraries as you want, as root cues or sub-cues - the location within the file is unimportant. All that counts is the library name, which has to be unique within the MD script, like all other cue names.
248 +Although it is called library, itΓÇÖs basically just a cue that doesnΓÇÖt do anything. You can mix cues and libraries as you want, as root cues or sub-cues - the location within the file is unimportant. All that counts is the library name, which has to be unique within the MD script, like all other cue names.
252 252  
253 253  To use a library, use the attribute ref:
254 254  
... ... @@ -288,17 +288,18 @@
288 288  </library>
289 289  {{/code}}
290 290  
291 -{{warning}}
292 -These examples are definitely **__not__ **examples of good scripting style.
293 -{{/warning}}
294 294  
295 -So when writing the library, you don't have to worry about name confusion, just use the names of cues in your library and it will work as expected when the library is used. Names of cues that do not belong to the library will not be available in expressions (see Foo in the example above), however, names of other libraries in the file are available when referencing them in the ref attribute.
289 +{{warning}}These examples are definitely <u>not</u> examples of good scripting style.{{/warning}}
296 296  
291 +
292 +
293 +So when writing the library, you donΓÇÖt have to worry about name confusion, just use the names of cues in your library and it will work as expected when the library is used. Names of cues that do not belong to the library will not be available in expressions (see Foo in the example above), however, names of other libraries in the file are available when referencing them in the ref attribute.
294 +
297 297  Notes:
298 298  
299 299  * It is //not// possible to directly call a cue which is 'inside' the library from 'outside' of the library, but it is possible to signal the library ref itself (possibly with parameters) and have a sub-cue inside the library listen to the signal on the library ref (possibly checking the parameters).
300 300  * You //can// access variables in the library root but generally this should be avoided in favor of parameterizing the library!
301 -** there are some cases where you do want to access these variables directly, for example for maintaining savegame compatibility when patching.
299 +** there are some cases where you do want to access these variables directly, for example for maintaining savegame compatibility when patching.(% id="library-parameters" %)
302 302  
303 303  == Library Parameters ==
304 304  
... ... @@ -317,7 +317,7 @@
317 317  </library>
318 318  {{/code}}
319 319  
320 -If a default value is supplied, the parameter is regarded as optional, otherwise it's required. When providing the actual parameters in a referencing cue, note that there is no <params> node:
318 +If a default value is supplied, the parameter is regarded as optional, otherwise itΓÇÖs required. When providing the actual parameters in a referencing cue, note that there is no <params> node:
321 321  
322 322  {{code language="xml"}}
323 323  <cue name="Foo" ref="Lib">
... ... @@ -326,7 +326,7 @@
326 326  </cue>
327 327  {{/code}}
328 328  
329 -The values (including default values) can be variable expressions and will be evaluated when the cue is enabled, i.e. when it starts checking the conditions. They will be available to the cue as variables, using the parameter name with a '$' prefix. In the example above, the variables $foo, $bar, and $baz would be created.
327 +The values (including default values) can be variable expressions and will be evaluated when the cue is enabled, i.e. when it starts checking the conditions. They will be available to the cue as variables, using the parameter name with a ΓÇÿ$ΓÇÖ prefix. In the example above, the variables $foo, $bar, and $baz would be created.
330 330  
331 331  {{code language="xml"}}
332 332  <library name="Lib">
... ... @@ -343,24 +343,24 @@
343 343  
344 344  = Instantiation =
345 345  
346 -One of the possible cue attributes is //**instantiate**//. If you set it to true, this changes what happens when a cue's conditions are met. Normally, if a cue is not instantiated, the cue's actions are run (taking a delay node into account) and the cue is marked as completed. But with **instantiate'//, a// **copy of the cue** (and all its sub-cues) is made when the conditions are met, and it is this copy in which the actions are performed and it is the copy whose status is set to complete when they are finished - this means that the original cue (the so-called **static cue**) remains in the //waiting// state, and if the conditions are met again then the whole thing happens all over again.**
347 -\\An instantiating cue should only be used with conditions that are only going to be met once (or a fairly limited number of times), or with conditions that include an event condition. Instantiation should not be used in a cue which, say, just depends on the game time being greater than a specific value as this will result in a copy of the cue being made after each check interval, which could increase memory usage a lot. The most common use of an instantiated cue is in responding to events such as the player ship changing sector, to react every time that event happens.
344 +One of the possible cue attributes is //**instantiate**//. If you set it to true, this changes what happens when a cue's conditions are met. Normally, if a cue is (% style="color: rgb(0,0,0);text-decoration: underline;" %)not instantiated, the cue's actions are run (taking a delay node into account) and the cue is marked as completed. But with **instantiate'//, a// **copy of the cue** (and all its sub-cues) is made when the conditions are met, and it is this copy in which the actions are performed and it is the copy whose status is set to complete when they are finished - this means that the original cue (the so-called **static cue**) remains in the //waiting// state, and if the conditions are met again then the whole thing happens all over again.**
345 +\\An instantiating cue should only be used with conditions that are only going to be met once (or a fairly limited number of times), or with conditions that include an event condition. Instantiation should (% style="color: rgb(0,0,0);text-decoration: underline;" %)not be used in a cue which, say, just depends on the game time being greater than a specific value as this will result in a copy of the cue being made after each check interval, which could increase memory usage a lot. The most common use of an instantiated cue is in responding to events such as the player ship changing sector, to react every time that event happens.
348 348  \\Instances that are created via //instantiate// are called **instantiated cues**. But sub-cues of instances are also instances (**sub-instances**) - they are created when they enter the waiting state. An instance is removed again (thereby freeing its memory) when it is complete or cancelled, and when all its instance sub-cues have been removed before. The simplest case is an instantiating cue with no sub-cues: The instance is created, the actions are performed, and the instance is removed immediately on completion. A pitfall could be an instance with a sub-cue that is forever in the waiting state (e.g. waiting for an event from an already destroyed object). It can never be removed, so you should clean up such a cue yourself, e.g. by cancelling it explicitly.
349 349  
350 350  == Cleaning up instances explicitly ==
351 351  
352 -Cancelling a cue with **<cancel_cue>** also cancels all its sub-cues, and cancelling a static cue stops it from instantiating more cues - but it does not cancel its instances. Resetting a cue with **<reset_cue>** resets both sub-cues and instantiated cues, but has the (desired) side effect that condition checks will start again if the parent cue's state allows it. Even a sub-instance that has been reset can return to the //waiting// state. Resetting an instantiated cue will stop it forever, because it is not supposed to be in the //waiting// state (only its static cue is). Resetting will also induce the clean-up reliably, but keep in mind that this is not the case for instance sub-cues.
350 +Cancelling a cue with **<cancel_cue>** also cancels all its sub-cues, and cancelling a static cue stops it from instantiating more cues - but it does not cancel its instances. Resetting a cue with **<reset_cue>** resets both sub-cues and instantiated cues, but has the (desired) side effect that condition checks will start again if the parent cueΓÇÖs state allows it. Even a sub-instance that has been reset can return to the //waiting// state. Resetting an instantiated cue will stop it forever, because it is not supposed to be in the //waiting// state (only its static cue is). Resetting will also induce the clean-up reliably, but keep in mind that this is not the case for instance sub-cues.
353 353  
354 -{{info}}
355 -<cancel_cue> and <reset_cue> only take effect after all remaining actions of the current cue are performed. So you can even safely cancel the cue that you are currently in (keyword "'''this'''") or any ancestor cue, and still perform more actions afterwards.
356 -{{/info}}
352 +{{info body="<cancel_cue> and <reset_cue> only take effect after all remaining actions of the current cue are performed. So you can even safely cancel the cue that you are currently in (keyword "'''this'''") or any ancestor cue, and still perform more actions afterwards."/}}
357 357  
358 358  == Access to instances ==
359 359  
360 -{{info}}
361 -This sub-section requires basic knowledge of script expressions.
362 -{{/info}}
363 363  
357 +
358 +{{info}}This sub-section requires basic knowledge of [[NULL|script expressions]].{{/info}}
359 +
360 +
361 +
364 364  In case of instances with sub-instances, you will often want to access a related instance from the current one. Like in the non-instance case, you can simply write the cue name in an expression to reference that cue. However, you should be aware of the pitfalls that are accompanied by this.
365 365  
366 366  When you use a cue name from the same script in an expression, it will always be resolved to some cue - usually a static cue, even if it is still in the disabled state, but it can also be an instance, if it is "related" to the current one.
... ... @@ -369,7 +369,7 @@
369 369  
370 370  Example chart:
371 371  
372 -[[~[~[image:Mission Director Guide - Instantiation.png~|~|width="800px"~]~]>>attach:ARCHIVE_XRWIKI_Modding_support_Mission_Director_GuideMission_Director_Guide_-_Instantiation.png]]
370 +[[~[~[image:ARCHIVE_XRWIKI_Modding_support_Mission_Director_GuideMission_Director_Guide_-_Instantiation.png~|~|width="800px"~]~]>>attach:ARCHIVE_XRWIKI_Modding_support_Mission_Director_GuideMission_Director_Guide_-_Instantiation.png]]\\
373 373  
374 374  This chart represents a script of 5 cues: Foo, Bar, SubBar, Baz and SubBaz. Continuous arrows denote parent-child relationship. Foo and Baz are instantiating cues (highlighted with red border). The static cues always exist, although static children of instantiating cues can never become active. Instances only exist as long as they are needed.
375 375  
... ... @@ -394,50 +394,51 @@
394 394  
395 395  Some additional common pitfalls with respect to instantiation are listed here. There may be more.
396 396  
397 -* **Conditions with results:** If the instantiating cue has conditions with results, those results are stored in variables - but in the variables of the static cue, not of the instance! So in the <actions> you have to access the variables via the **static **keyword:
395 +* **Conditions with results:** If the instantiating cue has conditions with results, those results are stored in variables - but in the variables of the static cue, not of the instance! So in the <actions> you have to access the variables via the **static **keyword:\\
398 398  
399 -{{code language="xml"}}<debug_text text="static.$foo"/>{{/code}}
400 -It may even be necessary to copy the variables over to the instance because the static variables can be overwritten by the next condition check:
401 -{{code language="xml"}}<set_value name="$foo" exact="static.$foo"/>{{/code}}
397 +{{code}}<debug_text text="static.$foo"/>{{/code}}(% style="color: rgb(0,0,255);text-decoration: none;" %)
398 +\\It may even be necessary to copy the variables over to the instance because the static variables can be overwritten by the next condition check:
399 +\\{{code}}<set_value name="$foo" exact="static.$foo"/>{{/code}}
402 402  
403 -* **Resetting completed/cancelled instances:** As explained above, sub-instances are only created when needed (when going to the //waiting// state) and are destroyed when they are not needed any more (when they are completed or cancelled, including all sub-cues). There are cases in which you want to access cues that don't exist any more - it simply doesn't work. In some cases you are safe: You can be sure that all your ancestors exist, and instantiating cues won't be removed until they are cancelled. In some other cases you simply don't know and have to check if the instance is already (or still) there.
404 -* **Lifetime of instances:** Do not make assumptions about when an instance is removed! Just looking at it in the Debug Manager keeps it alive for the time being. So, sometimes you could still have a completed instance that wouldn't exist under other circumstances.
401 +* **Resetting completed/cancelled instances:** As explained above, sub-instances are only created when needed (when going to the //waiting// state) and are destroyed when they are not needed any more (when they are completed or cancelled, including all sub-cues). There are cases in which you want to access cues that donΓÇÖt exist any more - it simply doesnΓÇÖt work. In some cases you are safe: You can be sure that all your ancestors exist, and instantiating cues wonΓÇÖt be removed until they are cancelled. In some other cases you simply donΓÇÖt know and have to check if the instance is already (or still) there.
402 +* **Lifetime of instances:** Do not make assumptions about when an instance is removed! Just looking at it in the Debug Manager keeps it alive for the time being. So, sometimes you could still have a completed instance that wouldnΓÇÖt exist under other circumstances.
405 405  
406 406  = Expressions =
407 407  
408 408  Most of the attribute values in actions and conditions are interpreted as script expressions and parsed accordingly. An expression is a phrase that can be evaluated to a single value. The simplest expressions are actual numeric values and strings, so called **literals:**
409 409  
410 -* {{code language="xml"}}0{{/code}} (integer number)
411 -* {{code language="xml"}}0772{{/code}} (leading 0 means octal integer number)
412 -* {{code language="xml"}}3.14159{{/code}} (floating point number)
413 -* {{code language="xml"}}5e12{{/code}} (float in exponent notation, "times ten to the power of")
414 -* {{code language="xml"}}0xCAFE{{/code}} (hexadecimal integer number)
408 +* {{code}}0{{/code}} (integer number)
409 +* {{code}}0772{{/code}} (leading 0 means octal integer number)
410 +* {{code}}3.14159{{/code}} (floating point number)
411 +* {{code}}5e12{{/code}} (float in exponent notation, "times ten to the power of")
412 +* {{code}}0xCAFE{{/code}} (hexadecimal integer number)
415 415  
416 -{{info}}
417 -Since octal numbers are hardly ever used (usually unknowingly), the parser is will produce a warning if an octal number is encountered."
418 -{{/info}}
419 419  
415 +
416 +{{info}}Since octal numbers are hardly ever used (usually unknowingly), the parser is will produce a warning if an octal number is encountered."{{info}}
417 +
418 +
419 +
420 420  You can write string literals by putting the string in single quotes:
421 421  
422 -* {{code language="xml"}}'Hello world'{{/code}}
423 -* {{code language="xml"}}''{{/code}} (empty string)
424 -* {{code language="xml"}}'String with a line break\n'{{/code}}
422 +* {{code}}'Hello world'{{/code}}
423 +* {{code}}''{{/code}} (empty string)
424 +* {{code}}'String with a line break\n'{{/code}}
425 425  
426 -{{info}}
427 -Since expressions are written in XML attribute values, you have to use the single quotes inside the double quotes for the actual attribute value. To write characters like '''< > " &''' in an expression string (or anywhere else in an XML attribute value), you'll have to escape them as '''&lt; &gt; &quot; &amp;''' respectively. The backslash '''\''' can be used in strings for escape characters like in C/C++. Most important are '''\'''' for a single quote as part of the string, and '''
428 -''' for the backslash itself.
429 -{{/info}}
430 430  
427 +
428 +{{info}}Since expressions are written in XML attribute values, you have to use the single quotes inside the double quotes for the actual attribute value. To write characters like '''< > " &amp;''' in an expression string (or anywhere else in an XML attribute value), youΓÇÖll have to escape them as '''&amp;lt; &amp;gt; &amp;quot; &amp;amp;''' respectively. The backslash '''\''' can be used in strings for escape characters like in C/C++. Most important are '''\'''' for a single quote as part of the string, and '''\\''' for the backslash itself.{{/info}}
429 +
431 431  == Numeric data types and suffixes ==
432 432  
433 433  Numbers can have a suffix that determines their numeric type. There are also numerical data types like "money" or "time" which can only be expressed by using an appropriate unit suffix:
434 434  
435 -* {{code language="xml"}}5000000000L{{/code}} (large integer)
436 -* {{code language="xml"}}1f{{/code}} (floating point number, same as 1.0, just 1 would be an integer)
437 -* {{code language="xml"}}1000Cr{{/code}} (Money in Credits, converted to 100000 cents automatically)
438 -* {{code language="xml"}}500m{{/code}} (Length in metres)
439 -* {{code language="xml"}}10s{{/code}} (Time in seconds)
440 -* {{code language="xml"}}1h{{/code}} (Time in hours, which is converted to 3600s automatically)
434 +* {{code}}5000000000L{{/code}} (large integer)
435 +* {{code}}1f{{/code}} (floating point number, same as 1.0, just 1 would be an integer)
436 +* {{code}}1000Cr{{/code}} (Money in Credits, converted to 100000 cents automatically)
437 +* {{code}}500m{{/code}} (Length in metres)
438 +* {{code}}10s{{/code}} (Time in seconds)
439 +* {{code}}1h{{/code}} (Time in hours, which is converted to 3600s automatically)
441 441  
442 442  A space between number and suffix is allowed.
443 443  
... ... @@ -478,9 +478,7 @@
478 478  \\24h|Time in milliseconds, seconds, minutes, or hours, respectively. A time value is always stored in seconds.
479 479  )))
480 480  
481 -{{info}}
482 -All unit data types are floating point types, except for money, which is an integer data type.
483 -{{/info}}
480 +{{info}}All unit data types are floating point types, except for money, which is an integer data type.{{/info}}
484 484  
485 485  == Operators ==
486 486  
... ... @@ -489,106 +489,90 @@
489 489  (% style="margin-left: 0.0px;" %)
490 490  (((
491 491  |Operator / Delimiter / Constant|Type|Example|Result of example|Description
492 -|null|constant|{{code language="xml"}}null + 1{{/code}}|{{code language="xml"}}1{{/code}}|Null value, see above
493 -|false|constant|{{code language="xml"}}1 == 0{{/code}}|{{code language="xml"}}false{{/code}}|Integer value 0, useful in Boolean expressions
494 -|true|constant|{{code language="xml"}}null == 0{{/code}}|{{code language="xml"}}true{{/code}}|Integer value 1, useful in Boolean expressions
495 -|pi|constant|{{code language="xml"}}2 * pi{{/code}}|{{code language="xml"}}6.2831853rad{{/code}}|π as an angle (same as 180deg)
496 -|()|delimiter|{{code language="xml"}}(2 + 4) * (6 + 1){{/code}}|{{code language="xml"}}42{{/code}}|Parentheses for arithmetic grouping
497 -|[]|delimiter|{{code language="xml"}}[1, 2, 2+1, 'string']{{/code}}|{{code language="xml"}}[1, 2, 3, 'string']{{/code}}|[[List>>doc:||anchor="HLists" style="outline-width: 0px !important; user-select: auto !important;"]] of values
498 -|table[]|delimiter|{{code language="xml"}}table[$foo='bar', {1+1}=40+2]{{/code}}|{{code language="xml"}}table[$foo='bar', {2}=42]{{/code}}|[[Table>>doc:||anchor="HTables" style="outline-width: 0px !important; user-select: auto !important;"]] of values
499 -|{}|delimiter|{{code language="xml"}}{101, 3}{{/code}}|{{code language="xml"}}'Some text'{{/code}}|Text lookup (page ID and text ID) from TextDB
500 -\\(Note: Braces are also used for [[property lookups>>doc:||anchor="HValueproperties" style="outline-width: 0px !important; user-select: auto !important;"]])
501 -|+|unary|{{code language="xml"}}+21 * (+2){{/code}}|{{code language="xml"}}42{{/code}}|Denotes positive number (no effect)
502 -|-|unary|{{code language="xml"}}-(21 * -2){{/code}}|{{code language="xml"}}42{{/code}}|Negates the following number
503 -|not|unary|{{code language="xml"}}not (21 == 42){{/code}}|{{code language="xml"}}true{{/code}}|Yields true if the following expression is false (equal to zero), false otherwise
489 +|null|constant|{{code}}null + 1{{/code}}|{{code}}1{{/code}}|Null value, see above
490 +|false|constant|{{code}}1 == 0{{/code}}|{{code}}false{{/code}}|Integer value 0, useful in Boolean expressions
491 +|true|constant|{{code}}null == 0{{/code}}|{{code}}true{{/code}}|Integer value 1, useful in Boolean expressions
492 +|pi|constant|{{code}}2 * pi{{/code}}|{{code}}6.2831853rad{{/code}}|π as an angle (same as 180deg)
493 +|()|delimiter|{{code}}(2 + 4) * (6 + 1){{/code}}|{{code}}42{{/code}}|Parentheses for arithmetic grouping
494 +|[]|delimiter|{{code}}[1, 2, 2+1, 'string']{{/code}}|{{code}}[1, 2, 3, 'string']{{/code}}|[[List>>MediaWiki.NULL]] of values
495 +|table[]|delimiter|{{code}}table[$foo='bar', {1+1}=40+2]{{/code}}|{{code}}table[$foo='bar', {2}=42]{{/code}}|[[Table>>MediaWiki.NULL]] of values
496 +|{}|delimiter|{{code}}{101, 3}{{/code}}|{{code}}'Some text'{{/code}}|Text lookup (page ID and text ID) from TextDB
497 +\\(Note: Braces are also used for [[property lookups>>MediaWiki.NULL]])
498 +|+|unary|{{code}}+21 * (+2){{/code}}|{{code}}42{{/code}}|Denotes positive number (no effect)
499 +|-|unary|{{code}}-(21 * -2){{/code}}|{{code}}42{{/code}}|Negates the following number
500 +|not|unary|{{code}}not (21 == 42){{/code}}|{{code}}true{{/code}}|Yields true if the following expression is false (equal to zero), false otherwise
504 504  |typeof|unary|
505 -{{code language="xml"}}typeof null{{/code}}
506 -\\{{code language="xml"}}typeof 0{{/code}}
507 -\\{{code language="xml"}}typeof 'Hello world'{{/code}}|
508 -{{code language="xml"}}datatype.null{{/code}}
509 -\\{{code language="xml"}}datatype.integer{{/code}}
510 -\\{{code language="xml"}}datatype.string{{/code}}|Yields the [[data type of the following sub-expression>>||anchor="typeof" style="outline-width: 0px !important; user-select: auto !important;"]]
502 +{{code}}typeof null{{/code}}
503 +\\{{code}}typeof 0{{/code}}
504 +\\{{code}}typeof 'Hello world'{{/code}}|
505 +{{code}}datatype.null{{/code}}
506 +\\{{code}}datatype.integer{{/code}}
507 +\\{{code}}datatype.string{{/code}}|Yields the [[data type of the following sub-expression>>MediaWiki.NULL]]
511 511  |sin|unary|
512 -{{code language="xml"}}sin(30deg){{/code}}
513 -\\{{code language="xml"}}sin(pi){{/code}}|
514 -{{code language="xml"}}0.5{{/code}}
515 -\\{{code language="xml"}}1.0{{/code}}|Sine (function-style, parentheses required)
509 +{{code}}sin(30deg){{/code}}
510 +\\{{code}}sin(pi){{/code}}|
511 +{{code}}0.5{{/code}}
512 +\\{{code}}1.0{{/code}}|Sine (function-style, parentheses required)
516 516  |cos|unary|
517 -{{code language="xml"}}cos(60deg){{/code}}
518 -\\{{code language="xml"}}cos(pi){{/code}}|
519 -{{code language="xml"}}0.5{{/code}}
520 -\\{{code language="xml"}}-1.0{{/code}}|Cosine (function-style, parentheses required)
521 -|tan|unary|
522 -{{code language="xml"}}tan(-45deg){{/code}}
523 -\\{{code language="xml"}}tan(45deg){{/code}}|
524 -{{code language="xml"}}-1.0{{/code}}
525 -\\{{code language="xml"}}1.0{{/code}}|Tangent (function-style, parentheses required)
526 -|asin|unary|
527 -{{code language="xml"}}asin(-0.5f){{/code}}
528 -\\{{code language="xml"}}asin(1){{/code}}|
529 -{{code language="xml"}}-0.523599rad{{/code}}
530 -\\{{code language="xml"}}1.5708rad{{/code}}|Inverse sine (function-style, parentheses required)
531 -|acos|unary|
532 -{{code language="xml"}}acos(0.5f){{/code}}
533 -\\{{code language="xml"}}acos(1.0f){{/code}}|
534 -{{code language="xml"}}2.0944rad{{/code}}
535 -\\{{code language="xml"}}0rad{{/code}}|Inverse cosine (function-style, parentheses required)
536 -|atan|unary|
537 -{{code language="xml"}}atan(1.0f){{/code}}|
538 -{{code language="xml"}}0.785398rad{{/code}}|Inverse tangent (function-style, parentheses required)
539 -|sqrt|unary|{{code language="xml"}}sqrt(2){{/code}}|{{code language="xml"}}1.414213LF{{/code}}|Square root (function-style, parentheses required)
540 -|exp|unary|{{code language="xml"}}exp(1){{/code}}|{{code language="xml"}}2.71828LF{{/code}}|Exponential function (function-style, parentheses required)
541 -|log|unary|{{code language="xml"}}log(8) / log(2){{/code}}|{{code language="xml"}}3.0LF{{/code}}|Natural logarithm (function-style, parentheses required)
542 -|^|binary|{{code language="xml"}}10 ^ 3{{/code}}|{{code language="xml"}}1000.0LF{{/code}}|Power
543 -|*|binary|{{code language="xml"}}21 * 2{{/code}}|{{code language="xml"}}42{{/code}}|Multiplication
544 -|/|binary|{{code language="xml"}}42 / 1042.0 / 10.0{{/code}}|{{code language="xml"}}44.2{{/code}}|Division
545 -|%|binary|{{code language="xml"}}42 % 10{{/code}}|{{code language="xml"}}2{{/code}}|Modulus (remainder of integer division)
514 +{{code}}cos(60deg){{/code}}
515 +\\{{code}}cos(pi){{/code}}|
516 +{{code}}0.5{{/code}}
517 +\\{{code}}0.0{{/code}}|Cosine (function-style, parentheses required)
518 +|sqrt|unary|{{code}}sqrt(2){{/code}}|{{code}}1.414213LF{{/code}}|Square root (function-style, parentheses required)
519 +|exp|unary|{{code}}exp(1){{/code}}|{{code}}2.71828LF{{/code}}|Exponential function (function-style, parentheses required)
520 +|log|unary|{{code}}log(8) / log(2){{/code}}|{{code}}3.0LF{{/code}}|Natural logarithm (function-style, parentheses required)
521 +|^|binary|{{code}}10 ^ 3{{/code}}|{{code}}1000.0LF{{/code}}|Power
522 +|*|binary|{{code}}21 * 2{{/code}}|{{code}}42{{/code}}|Multiplication
523 +|/|binary|{{code}}42 / 1042.0 / 10.0{{/code}}|{{code}}44.2{{/code}}|Division
524 +|%|binary|{{code}}42 % 10{{/code}}|{{code}}2{{/code}}|Modulus (remainder of integer division)
546 546  |+|binary|
547 -{{code language="xml"}}1 + 1{{/code}}
548 -\\{{code language="xml"}}'Hello' + ' world'{{/code}}|
549 -{{code language="xml"}}2{{/code}}
550 -\\{{code language="xml"}}'Hello world'{{/code}}|
526 +{{code}}1 + 1{{/code}}
527 +\\{{code}}'Hello' + ' world'{{/code}}|
528 +{{code}}2{{/code}}
529 +\\{{code}}'Hello world'{{/code}}|
551 551  Addition
552 552  \\String concatenation
553 -|-|binary|{{code language="xml"}}1 - 1{{/code}}|{{code language="xml"}}0{{/code}}|Subtraction
532 +|-|binary|{{code}}1 - 1{{/code}}|{{code}}0{{/code}}|Subtraction
554 554  |
555 555  lt
556 556  \\< (<)|binary|
557 -{{code language="xml"}}1 lt 3{{/code}}
558 -\\{{code language="xml"}}1 < 3{{/code}}|{{code language="xml"}}true{{/code}}|Less than
536 +{{code}}1 lt 3{{/code}}
537 +\\{{code}}1 &amp;lt; 3{{/code}}|{{code}}true{{/code}}|Less than
559 559  |
560 560  le
561 561  \\<=|binary|
562 -{{code language="xml"}}1 le 3{{/code}}
563 -\\{{code language="xml"}}1 <= 3{{/code}}|{{code language="xml"}}true{{/code}}|Less than or equal to
541 +{{code}}1 le 3{{/code}}
542 +\\{{code}}1 &amp;lt;= 3{{/code}}|{{code}}true{{/code}}|Less than or equal to
564 564  |
565 565  gt
566 566  \\> (>)|binary|
567 -{{code language="xml"}}1 gt 3{{/code}}
568 -\\{{code language="xml"}}1 > 3{{/code}}|{{code language="xml"}}false{{/code}}|Greater than
546 +{{code}}1 gt 3{{/code}}
547 +\\{{code}}1 &amp;gt; 3{{/code}}|{{code}}false{{/code}}|Greater than
569 569  |
570 570  ge
571 571  \\>=|binary|
572 -{{code language="xml"}}1 ge 3{{/code}}
573 -\\{{code language="xml"}}1 >= 3{{/code}}|{{code language="xml"}}false{{/code}}|Greater than or equal to
551 +{{code}}1 ge 3{{/code}}
552 +\\{{code}}1 &amp;gt;= 3{{/code}}|{{code}}false{{/code}}|Greater than or equal to
574 574  |(((
575 -
576 -)))|binary|{{code language="xml"}}1 + 1 == 2.0{{/code}}|{{code language="xml"}}true{{/code}}|Equal to
577 -|~!=|binary|{{code language="xml"}}1 + 1 != 2.0{{/code}}|{{code language="xml"}}false{{/code}}|Not equal to
578 -|and|binary|{{code language="xml"}}true and false{{/code}}|{{code language="xml"}}false{{/code}}|Logical AND (short-circuit semantics)
579 -|or|binary|{{code language="xml"}}true or false{{/code}}|{{code language="xml"}}true{{/code}}|Logical OR (short-circuit semantics)
554 += =
555 +)))|binary|{{code}}1 + 1 == 2.0{{/code}}|{{code}}true{{/code}}|Equal to
556 +|~!=|binary|{{code}}1 + 1 != 2.0{{/code}}|{{code}}false{{/code}}|Not equal to
557 +|and|binary|{{code}}true and false{{/code}}|{{code}}false{{/code}}|Logical AND (short-circuit semantics)
558 +|or|binary|{{code}}true or false{{/code}}|{{code}}true{{/code}}|Logical OR (short-circuit semantics)
580 580  |
581 581  if ... then ...
582 582  \\if ... then ... else ...|ternary|
583 -{{code language="xml"}}if 1 == 2 then 'F'{{/code}}
584 -\\{{code language="xml"}}if 1 == 2 then 'F' else 'T'{{/code}}|
585 -{{code language="xml"}}null{{/code}}
586 -\\{{code language="xml"}}'T'{{/code}}|Conditional operator ("inline if")
587 -)))
562 +{{code}}if 1 == 2 then 'F'{{/code}}
563 +\\{{code}}if 1 == 2 then 'F' else 'T'{{/code}}|
564 +{{code}}null{{/code}}
565 +\\{{code}}'T'{{/code}}|Conditional operator ("inline if")
588 588  
567 +)))(% id="operator-precedence-rules" %)
568 +(%%)
569 +
589 589  === Operator precedence rules ===
590 590  
591 -You can group sub-expressions using parentheses, but if you don't, the following order of operations is applied, so that 5-1+2*3 == 10 as you would expect. The order is the same as in the table above, but there are operators with the same precedence - these are applied from left to right.
572 +You can group sub-expressions using parentheses, but if you donΓÇÖt, the following order of operations is applied, so that 5-1+2*3 == 10 as you would expect. The order is the same as in the table above, but there are operators with the same precedence - these are applied from left to right.
592 592  
593 593  * Unary operators: +, -, not, typeof, function-style operators (highest precedence)
594 594  * Power operator: ^
... ... @@ -600,6 +600,8 @@
600 600  * or
601 601  * if/then/else (lowest precedence)
602 602  
584 +(% id="type-conversion" %)
585 +
603 603  === Type conversion ===
604 604  
605 605  When a binary arithmetic operator is used on numbers of different types, they will be converted to a suitable output type. The resulting type depends on whether a unit data type is involved (types that are not plain integers or floats). The following cases may occur:
... ... @@ -614,20 +614,21 @@
614 614  
615 615  There is a way to convert a number into a different type manually: You append the corresponding suffix to a sub-expression in parentheses, like this:
616 616  
617 -* {{code language="xml"}}(1 + 1)f{{/code}} ⟹ {{code language="xml"}}2f{{/code}} ⟹ {{code language="xml"}}2.0{{/code}}
618 -* {{code language="xml"}}(1h) m / (180deg) i{{/code}} ⟹ {{code language="xml"}}(3600s) m / (3.14rad) i{{/code}} ⟹ {{code language="xml"}}3600m / 3{{/code}} ⟹ {{code language="xml"}}1200m{{/code}}
600 +* {{code}}(1 + 1)f{{/code}} ⟹ {{code}}2f{{/code}} ⟹ {{code}}2.0{{/code}}
601 +* {{code}}(1h) m / (180deg) i{{/code}} ⟹ {{code}}(3600s) m / (3.14rad) i{{/code}} ⟹ {{code}}3600m / 3{{/code}} ⟹ {{code}}1200m{{/code}}
619 619  
620 -When converting to a non-default unit type, this means you interpret the number as in the given units: "{{code language="xml"}}(1km + 500m)h{{/code}}" means that you interpret 1500m as 1500 hours, so the resulting value will be 1500x3600 seconds. (As stated above, the default unit for a length is metres.)
603 +When converting to a non-default unit type, this means you interpret the number as in the given units: "{{code}}(1km + 500m)h{{/code}}" means that you interpret 1500m as 1500 hours, so the resulting value will be 1500x3600 seconds. (As stated above, the default unit for a length is metres.)
621 621  
622 622  The division operation will be an integer division (rounding towards zero) if both operands are integers (see the example in the table above). So if you want to get a floating point result, you have to make sure that at least one of the operands is a floating point type.
623 623  
624 624  Every data type can be combined with a string with the + operator, and will be converted to a string representation. That way you can also concatenate strings and numbers:
625 625  
626 -* {{code language="xml"}}'One plus one is equal to ' + (1+1) + '.'{{/code}} ⟹ {{code language="xml"}}'One plus one is equal to 2.'{{/code}}
627 -* {{code language="xml"}}'One plus one is not equal to ' + 1 + 1 + '.'{{/code}} ⟹ {{code language="xml"}}'One plus one is not equal to 11.'{{/code}}
609 +* {{code}}'One plus one is equal to ' + (1+1) + '.'{{/code}} ⟹ {{code}}'One plus one is equal to 2.'{{/code}}
610 +* {{code}}'One plus one is not equal to ' + 1 + 1 + '.'{{/code}} ⟹ {{code}}'One plus one is not equal to 11.'{{/code}}
628 628  
629 629  As you can see, operators of the same precedence (+ in this case) are always evaluated from left to right.
630 630  
614 +(% id="boolean-operators" %)
631 631  
632 632  === Boolean operators ===
633 633  
... ... @@ -637,28 +637,33 @@
637 637  * Values of any type can be used as Boolean operands, e.g. for "and". They will be interpreted as "true" if they are **non-zero** or **non-numeric**.
638 638  * != and == can be used with any data types, even non-numeric ones. When comparing two numeric values, they are converted using the rules above. Values of non-numeric types are never equal to null, or to any other numbers.
639 639  * "and" and "or" use short-circuit semantics: The right side of the operation can be skipped if the left side already determines the outcome of the operation
640 -** Example:{{code language="xml"}} false and $foo{{/code}} ⟹ {{code language="xml"}}false{{/code}} (the value of $foo is not checked at all)
624 +** Example:{{code}} false and $foo{{/code}} ⟹ {{code}}false{{/code}} (the value of $foo is not checked at all)
641 641  * Unlike != and ==, the comparison operators <, <=, >, >= are only supported **for numeric values**, **difficulty levels**, and **attention levels**. Comparing other non-numeric values will result in an error and an undefined result.
642 -* <, <=, >, >= cannot be used in XML directly, so lt, le, gt, ge are provided as alternatives. In some cases you won't have to use them, though - using [[range checks>>doc:||anchor="HValuecomparisons"]] with additional XML attributes can be more readable.
626 +* <, <=, >, >= cannot be used in XML directly, so lt, le, gt, ge are provided as alternatives. In some cases you wonΓÇÖt have to use them, though - using [[range checks>>MediaWiki.NULL]] with additional XML attributes can be more readable.
643 643  
644 -== (% id="categorybroken_macroanchorstrings-and-formatting" %)Strings and formatting(%%) ==
645 645  
629 +
630 +(% id="categorybroken_macroanchorstrings-and-formatting" %)== Strings and formatting==
631 +(% id="categorybroken_macroanchorstrings-and-formatting" %)
632 +
633 +{{{==}}}
634 +
646 646  You can concatenate string literals using the + operator, but there is also a printf-like formatting syntax, which is easier to use than concatenating lots of small pieces:
647 647  
648 -* {{code language="xml"}}'The %1 %2 %3 jumps over the %5 %4'.['quick', 'brown', 'fox', 'dog', 'lazy']{{/code}}
649 -* {{code language="xml"}}'%1 + %2 = %3'.[$a, $b, $a + $b]{{/code}}
637 +* {{code}}'The %1 %2 %3 jumps over the %5 %4'.['quick', 'brown', 'fox', 'dog', 'lazy']{{/code}}
638 +* {{code}}'%1 + %2 = %3'.[$a, $b, $a + $b]{{/code}}
650 650  
651 -See also the section about [[value properties>>doc:||anchor="HValueproperties" style="outline-width: 0px !important; user-select: auto !important;"]].
640 +See also the section about [[value properties>>MediaWiki.NULL]].
652 652  
653 -Instead of '%1 %2 %3', you can also use '%s %s %s', which is also compatible with Lua string formatting in the UI system. However, this should only be used if you are sure that the order is the same in all supported languages. If you want to make translators aware that they can change the order of parameters, you should prefer '%1 %2 %3'.
642 +Instead of ΓÇÿ%1 %2 %3ΓÇÖ, you can also use ΓÇÿ%s %s %sΓÇÖ, which is also compatible with Lua string formatting in the UI system. However, this should only be used if you are sure that the order is the same in all supported languages. If you want to make translators aware that they can change the order of parameters, you should prefer '%1 %2 %3'.
654 654  \\To get a percent character in the result string, use '%%' in the format string.
655 655  \\\\\\If you need a more sophisticated method for text substitution, try **<substitute_text>**. See the XML schema documentation for this script action.
656 656  \\**[New as of X Rebirth 4.0]**
657 657  \\ With the formatting syntax above, it is even possible to control how the parameter is formatted, using modifiers between "%" and the parameter specifier ("s" or the parameter number):
658 658  
659 -* {{code language="xml"}}'%,s'.[12345678]{{/code}} ⟹ {{code language="xml"}}'12,345,678'{{/code}} (the "," modifier shows a number with thousands separators, correctly localised)
660 -* {{code language="xml"}}'%.3s'.[123.4]{{/code}} ⟹ {{code language="xml"}}'123.400'{{/code}} (show 3 fractional digits, rounding half away from zero - decimal point correctly localised)
661 -* {{code language="xml"}}'%,.1s'.[12345.67]'{{/code}} ⟹ {{code language="xml"}}'12,345.7'{{/code}} (combination of the above)
648 +* {{code}}'%,s'.[12345678]{{/code}} ⟹ {{code}}'12,345,678'{{/code}} (the "," modifier shows a number with thousands separators, correctly localised)
649 +* {{code}}'%.3s'.[123.4]{{/code}} ⟹ {{code}}'123.400'{{/code}} (show 3 fractional digits, rounding half away from zero - decimal point correctly localised)
650 +* {{code}}'%,.1s'.[12345.67]'{{/code}} ⟹ {{code}}'12,345.7'{{/code}} (combination of the above)
662 662  
663 663  Additional remarks:
664 664  
... ... @@ -666,58 +666,77 @@
666 666  * If "," is used without "." then any fractional digits are discarded.
667 667  * "." must be followed by a single digit (0-9). In case of ".0" any fractional digits are discarded (rounding towards zero, not half away from zero).
668 668  
669 -{{info}}
670 -There are also special methods to [[format money values and time values>>doc:||anchor="HMoneyandtimeformatting" style="outline-width: 0px !important; user-select: auto !important;"]] using the "formatted" property.
671 -{{/info}}
672 672  
659 +
660 +{{info body="There are also special methods to [[NULL|format money values and time values]] using the "formatted" property."/}}
661 +
662 +
663 +
664 +\\
665 +
666 +(% id="categorybroken_macroanchorlists" %)
667 +
673 673  == Lists ==
674 674  
675 -Another example for a non-numeric value is a list: It is an ordered collection of other arbitrary values (called array or vector in other languages). It can be constructed within an expression using the [[~[~] syntax>>doc:||anchor="HOperators"]]. It may also be generated by special actions and conditions, and there are actions that can [[insert or remove values>>doc:||anchor="HCreatingandremovingvariables" style="outline-width: 0px !important; user-select: auto !important;"]].
670 +Another example for a non-numeric value is a list: It is an ordered collection of other arbitrary values (called array or vector in other languages). It can be constructed within an expression using the [[~[~] syntax>>MediaWiki.NULL]]. It may also be generated by special actions and conditions, and there are actions that can [[insert or remove values>>MediaWiki.NULL]].
676 676  
677 -A list can contain values of arbitrary data types, even mixed in the same list - so a list can actually contain other lists. However, some of the things that you can do with lists require that all contained elements are of a certain type. The contents of a list can be accessed via properties, see the section about [[value properties>>doc:||anchor="HValueproperties"]]. Lists can be empty, these are written as "[ ]".
672 +A list can contain values of arbitrary data types, even mixed in the same list - so a list can actually contain other lists. However, some of the things that you can do with lists require that all contained elements are of a certain type. The contents of a list can be accessed via properties, see the section about [[value properties>>MediaWiki.NULL]]. Lists can be empty, these are written as "[ ]".
678 678  
679 -{{info}}
680 -When accessing a list's elements, the numbering is '''1-based''', so the first element has number 1. This is intuitive but different from 0-based numbering in most programming languages."
681 -{{/info}}
674 +{{info}}When accessing a listΓÇÖs elements, the numbering is '''1-based''', so the first element has number 1. This is intuitive but different from 0-based numbering in most programming languages."{{/info}}
682 682  
676 +
677 +
683 683  Lists are stored in variables as references, so multiple variables can refer to the same **shared list**: If you change a shared list through a variable, e.g. by changing the value of an element, you change it as well for all other variables. However, the operators == and != can also be used on two distinct lists to compare their elements.
684 684  
685 -{{info}}
686 -When using <remove_from_list/>, be aware that all elements are checked and potentially removed during the action. Do not provide this action with a index lookup of that list as it may become out of bounds.
680 +{{info}}When using <remove_from_list/>, be aware that all elements are checked and potentially removed during the action. Do not provide this action with a index lookup of that list as it may become out of bounds.
687 687  
688 688  Bad usage attempting to remove the last element of the list: <remove_from_list name="$List" exact="$List.{$List.count}"/>
689 689  
690 -If you know the index, simply use <remove_value/> e.g. <remove_value name="$List.{$List.count}"/>
691 -{{/info}}
684 +If you know the index, simply use <remove_value/> e.g. <remove_value name="$List.{$List.count}"/>"{{/info}}
692 692  
686 +
687 +
688 +\\
689 +
693 693  (% id="categorybroken_macroanchortables" %)
691 +
694 694  == Tables ==
695 695  
696 -Tables are associative arrays - they are like lists, but you can assign values to (almost) arbitrary keys, not just to index numbers. A table is constructed within an expression using the [[table~[~] syntax>>doc:||anchor="HOperators" style="outline-width: 0px !important; user-select: auto !important;"]]. See the section about [[value properties>>doc:||anchor="HValueproperties" style="outline-width: 0px !important; user-select: auto !important;"]] for how to access the contents of a table. [[Creating and removing entries>>doc:||anchor="HCreatingandremovingvariables" style="outline-width: 0px !important; user-select: auto !important;"]] works similarly to lists, but instead of inserting, you simply assign a value to a table key. If the key does not exist yet, it will be created.
694 +Tables are associative arrays - they are like lists, but you can assign values to (almost) arbitrary keys, not just to index numbers. A table is constructed within an expression using the [[table~[~] syntax>>MediaWiki.NULL]]. See the section about [[value properties>>MediaWiki.NULL]] for how to access the contents of a table. [[Creating and removing entries>>MediaWiki.NULL]] works similarly to lists, but instead of inserting, you simply assign a value to a table key. If the key does not exist yet, it will be created.\\
697 697  
698 698  Almost all values are allowed as table keys, but there are a few exceptions:
699 699  
700 700  * Strings must start with '$', like variables
701 701  * null cannot be used as table key (but the number 0 is valid)
702 -* Lists, tables, groups and buildplans cannot be used as table keys
700 +* Lists, tables, groups and buildplans cannot be used as table keys\\
703 703  
702 +
703 +
704 704  These restrictions only apply to the keys, there are no restrictions for values that you assign to them. For example:
705 705  
706 -* {{code language="xml"}}table[]{{/code}} ⟹ creates an empty table
707 -* {{code language="xml"}}table[{0} = null]{{/code}} ⟹ creates a table that maps the number 0 to null
706 +* {{code}}table[]{{/code}} ⟹ creates an empty table
707 +* {{code}}table[{0} = null]{{/code}} ⟹ creates a table that maps the number 0 to null\\
708 708  
709 -* {{code language="xml"}}table[{'$foo'} = 'bar']{{/code}} ⟹ a table that maps the string '$foo' to the string 'bar'
710 -* {{code language="xml"}}table[$foo = 'bar']{{/code}} ⟹ exactly the same, just a shorter notation for string keys
711 -* {{code language="xml"}}table[foo = 'bar']{{/code}} ⟹ error, 'foo' does not start with a '$'
712 -* {{code language="xml"}}table[{1} = [], {2} = table[]] {{/code}} ⟹ a table that maps 1 to an empty list and 2 to an empty table
713 713  
714 -Just like lists, tables are stored as references, so it's possible that multiple variables reference the same table (see above).
715 715  
711 +* {{code}}table[{'$foo'} = 'bar']{{/code}} ⟹ a table that maps the string '$foo' to the string 'bar'
712 +* {{code}}table[$foo = 'bar']{{/code}} ⟹ exactly the same, just a shorter notation for string keys
713 +* {{code}}table[foo = 'bar']{{/code}} ⟹ error, 'foo' does not start with a '$'
714 +* {{code}}table[{1} = [], {2} = table[]] {{/code}} ⟹ a table that maps 1 to an empty list and 2 to an empty table\\
715 +
716 +
717 +
718 +Just like lists, tables are stored as references, so it's possible that multiple variables reference the same table (see above).\\
719 +
720 +\\
721 +
722 +(% id="categorybroken_macroanchorvalue-properties" %)
723 +
716 716  == Value properties ==
717 717  
718 -Properties are a crucial concept in script expressions. In the previous sections you have seen mostly constant expressions, which are already evaluated when they are parsed at game start. For reading and writing variables and evaluating the game's state, properties are used.
726 +Properties are a crucial concept in script expressions. In the previous sections you have seen mostly constant expressions, which are already evaluated when they are parsed at game start. For reading and writing variables and evaluating the gameΓÇÖs state, properties are used.
719 719  
720 -Numbers don't have any properties. Lists, for example, have quite a few of them: You can access the number of elements; and each element is also a property of the list. A ship can have properties like its name, the ship class, its position etc.
728 +Numbers donΓÇÖt have any properties. Lists, for example, have quite a few of them: You can access the number of elements; and each element is also a property of the list. A ship can have properties like its name, the ship class, its position etc.
721 721  
722 722  You can imagine properties as key/value pairs in an associative mapping: You pass the key, and you get the value as result. For example, the list [42, null, 'text'] has the following mapping:
723 723  
... ... @@ -730,25 +730,31 @@
730 730  
731 731  You can look up a property by appending a dot and the key in curly braces:
732 732  
733 -* {{code language="xml"}}[100, 200, 300, 400].{1}{{/code}} ⟹ 100 (reading the first element)
734 -* {{code language="xml"}}[100, 200, ['Hello ', 'world']] .{3}.{2}{{/code}} ⟹ 'world' (second element of the inner list, which is the third element of the outer list)
735 -* {{code language="xml"}}[].{'count'}{{/code}} ⟹ 0
736 -* {{code language="xml"}}table[{21} = 42].{21}{{/code}} ⟹ 42
741 +* {{code}}[100, 200, 300, 400].{1}{{/code}} ⟹ 100 (reading the first element)
742 +* {{code}}[100, 200, ['Hello ', 'world']] .{3}.{2}{{/code}} ⟹ 'world' (second element of the inner list, which is the third element of the outer list)
743 +* {{code}}[].{'count'}{{/code}} ⟹ 0
744 +* {{code}}table[{21} = 42].{21}{{/code}} ⟹ 42\\
737 737  
746 +
747 +
738 738  In most cases the property key is a fixed string, like "name" or "class". You can write this like above:
739 739  
740 -* {{code language="xml"}}[42].{'count'}{{/code}}
741 -* {{code language="xml"}}$ship.{'name'}{{/code}}
742 -* {{code language="xml"}}$ship.{'class'}{{/code}}
743 -* {{code language="xml"}}table[$foo='bar'].{'$foo'}{{/code}}
750 +* {{code}}[42].{'count'}{{/code}}
751 +* {{code}}$ship.{'name'}{{/code}}
752 +* {{code}}$ship.{'class'}{{/code}}
753 +* {{code}}table[$foo='bar'].{'$foo'}{{/code}}\\
744 744  
755 +
756 +
745 745  But it is easier just to write the property key without braces, which is equivalent:
746 746  
747 -* {{code language="xml"}}[0].count{{/code}}
748 -* {{code language="xml"}}$ship.name{{/code}}
749 -* {{code language="xml"}}$ship.class{{/code}}
750 -* {{code language="xml"}}table[$foo='bar'].$foo{{/code}}
759 +* {{code}}[0].count{{/code}}
760 +* {{code}}$ship.name{{/code}}
761 +* {{code}}$ship.class{{/code}}
762 +* {{code}}table[$foo='bar'].$foo{{/code}}\\
751 751  
764 +
765 +
752 752  (In this case, $ship is a variable. All variables start with a "$", so they cannot be confused with keywords.)
753 753  
754 754  A list has even more properties:
... ... @@ -757,19 +757,19 @@
757 757  
758 758  **min'** and '**max'** return the minimum or maximum (all elements have to be numeric)
759 759  
760 -* {{code language="xml"}}[1, 6, 8].min{{/code}} ⟹ 1
774 +* {{code}}[1, 6, 8].min{{/code}} ⟹ 1
761 761  
762 762  **average'** returns the average (but all element types have to be compatible)
763 763  
764 -* {{code language="xml"}}[1, 6, 8].average{{/code}} ⟹ 5
778 +* {{code}}[1, 6, 8].average{{/code}} ⟹ 5
765 765  
766 -**indexof'** is followed by another property, and the index of the first occurence of that key in the list is returned, or 0 if it's not in the list
780 +**indexof'** is followed by another property, and the index of the first occurence of that key in the list is returned, or 0 if itΓÇÖs not in the list
767 767  
768 -* {{code language="xml"}}[1, 6, 8].indexof.{8}{{/code}} ⟹ 3
782 +* {{code}}[1, 6, 8].indexof.{8}{{/code}} ⟹ 3
769 769  
770 770  **clone'** creates a shallow copy of the list (i.e. lists that are contained as elements in the list are not copied, only the reference to them)
771 771  
772 -* {{code language="xml"}}[1, 6, 8].clone{{/code}} ⟹ {{code language="xml"}}[1, 6, 8]{{/code}}
786 +* {{code}}[1, 6, 8].clone{{/code}} ⟹ {{code}}[1, 6, 8]{{/code}}
773 773  
774 774  A table has different properties:
775 775  
... ... @@ -776,40 +776,53 @@
776 776  * '**clone'** creates a shallow copy of the table
777 777  * '**keys'** allows you to access data about the table's keys
778 778  
779 -However, 'keys' alone will not give you a result. 'keys' must be followed by another keyword to retrieve the desired information, for example:
793 +However, 'keys' alone will not give you a result. 'keys' must be followed by another keyword to retrieve the desired information, for example:\\
780 780  
781 781  
782 782  
783 -* {{code language="xml"}}$table.keys.list{{/code}}: Yields a list of all keys in the table (reliably sorted by key if all keys are numeric)
797 +* {{code}}$table.keys.list{{/code}}: Yields a list of all keys in the table (reliably sorted by key if all keys are numeric)\\
784 784  
785 -* {{code language="xml"}}$table.keys.sorted{{/code}}: Yields a list of all keys in the table, sorted by their associated values (which requires that all values are numeric)
786 -* {{code language="xml"}}$table.keys.random{{/code}}: A randomly chosen key (which requires that the table is non-empty)
787 787  
788 -{{info}}
789 -The string formatting syntax that you have seen [[above>>doc:||anchor="HStringsandformatting" style="outline-width: 0px !important; user-select: auto !important;"]] is also based on the property system. You basically pass a list as property key to a string. Braces around the brackets are not required, so 'foo'.[...] is just a convenient alternative notation for 'foo'.{[...]}.
790 -{{/info}}
791 791  
792 -=== (% id="lookup-tests-and-suppressing-errors" %)Lookup tests and suppressing errors(%%) ===
801 +* {{code}}$table.keys.sorted{{/code}}: Yields a list of all keys in the table, sorted by their associated values (which requires that all values are numeric)
802 +* {{code}}$table.keys.random{{/code}}: A randomly chosen key (which requires that the table is non-empty)
793 793  
804 +
805 +
806 +{{info}}The string formatting syntax that you have seen [[NULL|above]] is also based on the property system. You basically pass a list as property key to a string. Braces around the brackets are not required, so 'foo'.[...] is just a convenient alternative notation for 'foo'.{[...]}.{{/info}}
807 +
808 +
809 +
810 +(% id="lookup-tests-and-suppressing-errors" %)=== Lookup tests and suppressing errors
811 +
812 +
813 +{{{===}}}
814 +
794 794  If you look up a property that does not exist, there will be an error, and the result will be null. To test whether a property exists, you can append a question mark "?" to the lookup, which yields true or false:
795 795  
796 -* {{code language="xml"}}$list.{5}{{/code}} ⟹ The fifth element of a list - however, if $list has less than 5 elements (and if it's also not a table with the key 5), there will be an error
797 -* {{code language="xml"}}$list.{5}?{{/code}} ⟹ true if $list exists and has the property 5, false otherwise
798 -* {{code language="xml"}}$table.$key?{{/code}} ⟹ Analogously, true if $table exists and has the string property '$key'
817 +* {{code}}$list.{5}{{/code}} ⟹ The fifth element of a list - however, if $list has less than 5 elements (and if it's also not a table with the key 5), there will be an error
818 +* {{code}}$list.{5}?{{/code}} ⟹ true if $list exists and has the property 5, false otherwise
819 +* {{code}}$table.$key?{{/code}} ⟹ Analogously, true if $table exists and has the string property '$key'\\
799 799  
821 +
822 +
800 800  The question mark can even be applied to variables:
801 801  
802 -* {{code language="xml"}}$list{{/code}} ⟹ The value stored under the name $list, or an error if there is no such variable
803 -* {{code language="xml"}}$list?{{/code}} ⟹ true if the variable exists, false otherwise
825 +* {{code}}$list{{/code}} ⟹ The value stored under the name $list, or an error if there is no such variable
826 +* {{code}}$list?{{/code}} ⟹ true if the variable exists, false otherwise
804 804  
805 805  To look up the value of a property although it may not exist, you can use the at-sign "@" as prefix:
806 806  
807 -* {{code language="xml"}}@$list.{5}{{/code}} ⟹ The result of the $list lookup if $list exists and has the property 5, otherwise null (without error message)
808 -* {{code language="xml"}}@$list{{/code}} ⟹ The list if this variable exists, null otherwise
809 -* {{code language="xml"}}@$list.{5}.{1}{{/code}} ⟹ The first element of the fifth element of $list, if it exists, null otherwise
830 +* {{code}}@$list.{5}{{/code}} ⟹ The result of the $list lookup if $list exists and has the property 5, otherwise null (without error message)
831 +* {{code}}@$list{{/code}} ⟹ The list if this variable exists, null otherwise
832 +* {{code}}@$list.{5}.{1}{{/code}} ⟹ The first element of the fifth element of $list, if it exists, null otherwise
810 810  
811 811  As you can see, an error is already prevented if any link in the property chain does not exist. But use the @ prefix with care, since error messages are really helpful for detecting problems in your scripts. The @ prefix only suppresses property-related error messages and does not change any in-game behaviour.
812 812  
836 +\\
837 +
838 +(% id="static-lookups" %)
839 +
813 813  === Static lookups ===
814 814  
815 815  There are a few data types which are basically enumerations: They only consist of a set of named values, e.g. the "class" data type, which is used for the component classes that exist in the game. For all these static enumeration classes there is a lookup value of the same name, from which you can get the named values as properties by their name. So for the type "class", there is a value "class" that can be used to access the classes.
... ... @@ -818,6 +818,10 @@
818 818  
819 819  (% style="margin-left: 0.0px;" %)
820 820  (((
848 +\\
849 +
850 +
851 +
821 821  |Data type (= value name)|Examples|Description
822 822  |class|
823 823  class.ship
... ... @@ -838,11 +838,11 @@
838 838  |profile|
839 839  profile.flat
840 840  \\profile.increasing
841 -\\profile.bell|Probability distribution profile (see [[random ranges>>doc:||anchor="HRandomranges" style="outline-width: 0px !important; user-select: auto !important;"]])
872 +\\profile.bell|Probability distribution profile (see [[random ranges>>MediaWiki.NULL]])
842 842  |cuestate|
843 843  cuestate.waiting
844 844  \\cuestate.active
845 -\\cuestate.complete|[[Cue states>>||anchor="HCues" style="outline-width: 0px !important; user-select: auto !important;"]]
876 +\\cuestate.complete|[[Cue states>>MediaWiki.NULL]]
846 846  |level|
847 847  level.easy
848 848  \\level.medium
... ... @@ -862,38 +862,43 @@
862 862  \\faction.argongovernment|Factions
863 863  )))
864 864  
865 -{{id name="typeof"/}}
896 +{{info}}With the ''typeof'' operator you can get the datatype of any expression and compare it with what you expect, for example:
866 866  
867 -{{info}}
868 -With the ''typeof'' operator you can get the datatype of any expression and compare it with what you expect, for example:
869 -
870 870  <code>typeof $value == datatype.faction</code>
871 871  
872 872  However, you should not compare the type to datatype.string because there are strings that have different data types. To check for a string you should use the datatype's property "'''isstring'''" instead. For example, to check if the variable $value is a string, use the following term:
873 873  
874 -<code>(typeof $value).isstring</code>"
875 -{{/info}}
902 +<code>(typeof $value).isstring</code>"{{/info}}
876 876  
877 -{{info}}
878 -There is also the datatype "tag" with the lookup name "tag" - however, this is not an enumeration type. Looking up a value by name never fails, you actually create a tag value for a given name if it does not exist. For example, if you have a typo, like "tag.mision" instead of "tag.mission", there won't be an error because any name is valid for a tag, and the tag "mision" is created on its first use."
879 -{{/info}}
904 +{{info}}There is also the datatype "tag" with the lookup name "tag" - however, this is not an enumeration type. Looking up a value by name never fails, you actually create a tag value for a given name if it does not exist. For example, if you have a typo, like "tag.mision" instead of "tag.mission", there wonΓÇÖt be an error because any name is valid for a tag, and the tag "mision" is created on its first use."{{/info}}
880 880  
906 +\\
907 +
908 +
909 +
910 +(% id="player-properties" %)
911 +
881 881  === Player properties ===
882 882  
883 883  You can access many player-related game properties via the keyword "player":
884 884  
885 -* player.**name**: The player's name
916 +* player.**name**: The playerΓÇÖs name
886 886  * player.**age**: The passed in-game time since game start
887 -* player.**money**: The money in the player's account
888 -* player.**ship**: The ship the player is currently on (not necessarily the player's ship), or null if the player is on a station
918 +* player.**money**: The money in the playerΓÇÖs account
919 +* player.**ship**: The ship the player is currently on (not necessarily the player's ship), or null if the player is on a station\\
889 889  
921 +
922 +
890 890  * player.**primaryship**: The player's own ship (but the player is not necessarily on board)
891 -* player.**entity**: The actual player object
924 +* player.**entity**: The actual player object\\
892 892  
926 +
927 +
893 893  * player.**zone**, player.**sector**, player.**cluster**, player.**galaxy**: Location of the player entity
894 894  * player.**copilot**: The co-pilot NPC
895 895  
896 896  The game consists of objects of different classes (zones, ships, stations, NPCs). They have the common datatype "component", however, they have different properties, e.g. NPCs have the property "race", but ships don't.
932 +\\(% id="safe-properties" %)
897 897  
898 898  === Safe properties ===
899 899  
... ... @@ -908,21 +908,28 @@
908 908  
909 909  These properties will not cause errors when used on "null" or on a destroyed object (which may still be accessible from scripts in some cases), and produce null or false as results, respectively. (The keyword "available" is used for trades, not for objects. Trades can also become invalid.) However, when using such a property on a different data type like a number, there will still be an error.
910 910  
911 -=== (% id="categorybroken_macroanchormoney-and-time-formatting" %)Money and time formatting(%%) ===
947 +(% id="categorybroken_macroanchormoney-and-time-formatting" %)=== Money and time formatting
912 912  
949 +
950 +{{{===}}}
951 +
913 913  **[New as of X Rebirth 4.0]**
914 -\\Numbers don't have any properties, except for money and time: They have a "**formatted**" property, which allows you to get a custom string representation with more advanced options than the [[generic formatting method>>||anchor="HStringsandformatting" style="outline-width: 0px !important; user-select: auto !important;"]] for numbers.
953 +\\Numbers don't have any properties, except for money and time: They have a "**formatted**" property, which allows you to get a custom string representation with more advanced options than the [[generic formatting method>>MediaWiki.NULL]] for numbers.
915 915  
916 -* {{code language="xml"}}$money.formatted.{'formatstring'}{{/code}}
917 -* {{code language="xml"}}$money.formatted.default{{/code}} (using default format string '%s')
955 +* {{code}}$money.formatted.{'formatstring'}{{/code}}
956 +* {{code}}$money.formatted.default{{/code}} (using default format string '%s')\\
918 918  
919 -* {{code language="xml"}}$time.formatted.{'formatstring'}{{/code}}
920 -* {{code language="xml"}}$time.formatted.default{{/code}} (using default format string '%T')
921 921  
959 +
960 +* {{code}}$time.formatted.{'formatstring'}{{/code}}
961 +* {{code}}$time.formatted.default{{/code}} (using default format string '%T')
962 +
922 922  In scripts, money is stored in cents, not Credits. The formatted representation always shows the value in Credits, including thousands separators.
923 923  
924 -When formatting the money value, any specifier (such as '%s') in the format string is replaced by the money value, so usually the format string only consists of this one specifier. The following modifiers can be used between '%' and the specifier character, to enable formatting options:
965 +When formatting the money value, any specifier (such as '%s') in the format string is replaced by the money value, so usually the format string only consists of this one specifier. The following modifiers can be used between '%' and the specifier character, to enable formatting options:\\
925 925  
967 +
968 +
926 926  |1-9|Truncation|To enable truncation, specify the number of relevant digits that should be displayed. If the money string is too long, it can be truncated and a metric unit prefix (e.g. k = kilo) is appended. (All digits are shown unless truncation is enabled.)
927 927  |c|Colouring|If truncation is enabled, the metric unit prefixes (e.g. k, M, G) can be coloured when displayed on the screen, using the escape sequence '\033C'.
928 928  |.|Cents|Usually money values have no cent part, since cents are not used in accounts or trades. However, single ware prices can have a non-zero cent part. (Cents are not displayed if money is truncated)
... ... @@ -937,38 +937,46 @@
937 937  * %G: Credits (truncated) in Giga format
938 938  * %T: Credits (truncated) in Tera format
939 939  * %Cr: Localised "Cr" string
940 -* %%: A % sign
983 +* %%: A % sign\\
941 941  
942 -Examples:
943 943  
944 -* {{code language="xml"}}(1234Cr).formatted.{'%s'}{{/code}}⟹{{code language="xml"}}'1,234'{{/code}}
945 -* {{code language="xml"}}(1234Cr).formatted.default{{/code}}⟹{{code language="xml"}}'1,234'{{/code}} (same as {'%s'})
946 -* {{code language="xml"}}(1234Cr).formatted.{'%.s %Cr'}{{/code}}⟹{{code language="xml"}}'1,234.00 Cr'{{/code}}
947 -* {{code language="xml"}}(1234Cr).formatted.{'%1s'}{{/code}}⟹{{code language="xml"}}'1 k'{{/code}} (rounding towards zero)
948 -* {{code language="xml"}}(1234Cr).formatted.{'%cM'}{{/code}}⟹{{code language="xml"}}'0 M'{{/code}}
949 949  
950 -For documentation of time format strings, see the Lua function ConvertTimeString() in the [[Lua function overview>>doc:X Rebirth Wiki.Modding support.UI Modding support.Lua function overview.WebHome||style="outline-width: 0px !important; user-select: auto !important;"]].
987 +Examples:\\
951 951  
989 +
990 +
991 +* {{code}}(1234Cr).formatted.{'%s'}{{/code}}⟹{{code}}'1,234'{{/code}}
992 +* {{code}}(1234Cr).formatted.default{{/code}}⟹{{code}}'1,234'{{/code}} (same as {'%s'})
993 +* {{code}}(1234Cr).formatted.{'%.s %Cr'}{{/code}}⟹{{code}}'1,234.00 Cr'{{/code}}
994 +* {{code}}(1234Cr).formatted.{'%1s'}{{/code}}⟹{{code}}'1 k'{{/code}} (rounding towards zero)
995 +* {{code}}(1234Cr).formatted.{'%cM'}{{/code}}⟹{{code}}'0 M'{{/code}}
996 +
997 +For documentation of time format strings, see the Lua function ConvertTimeString() in the [[MediaWiki.ARCHIVE.XRWIKIModding_supportUI_Modding_supportLua_function_overview]].
998 +
952 952  Examples:
953 953  
954 -* {{code language="xml"}}(151s).formatted.{'%T'}{{/code}} ⟹ {{code language="xml"}}'00:02:31'{{/code}}
955 -* {{code language="xml"}}(151s).formatted.default{{/code}} ⟹ {{code language="xml"}}'00:02:31'{{/code}} (same as {'%T'})
956 -* {{code language="xml"}}(151s).formatted.{'%.3T'}{{/code}} ⟹ {{code language="xml"}}'00:02:31.000'{{/code}}
957 -* {{code language="xml"}}(151s).formatted.{'%h:%M'}{{/code}} ⟹ {{code language="xml"}}'0:02'{{/code}}
1001 +* {{code}}(151s).formatted.{'%T'}{{/code}} ⟹ {{code}}'00:02:31'{{/code}}
1002 +* {{code}}(151s).formatted.default{{/code}} ⟹ {{code}}'00:02:31'{{/code}} (same as {'%T'})
1003 +* {{code}}(151s).formatted.{'%.3T'}{{/code}} ⟹ {{code}}'00:02:31.000'{{/code}}
1004 +* {{code}}(151s).formatted.{'%h:%M'}{{/code}} ⟹ {{code}}'0:02'{{/code}}
958 958  
1006 +(% id="complete-property-documentation" %)
1007 +
959 959  === Complete property documentation ===
960 960  
961 961  To access the script property documentation that is included in the game, you can extract the required files from the game's catalog files using the [[X Catalog Tool>>url:https://forum.egosoft.com/viewtopic.php?t=363625]]. Extract the HTML file __scriptproperties.html__ in the game's root folder, and all files in the "libraries" sub-folder. For resolving text references in the browser automatically, also extract 0001-L044.xml in the "t" sub-folder.
962 962  
963 -The raw documentation data is located in libraries/scriptproperties.xml, but it is recommended to open scriptproperties.html in a browser.
1012 +The raw documentation data is located in libraries/scriptproperties.xml, but it is recommended to open scriptproperties.html in a browser.\\
964 964  
965 -{{info}}
966 -scriptproperties.html has to load files from different folders, which modern browsers do not allow by default for security reasons. In order to open scriptproperties.html, the following is required:
967 967  
1015 +
1016 +{{info}}scriptproperties.html has to load files from different folders, which modern browsers do not allow by default for security reasons. In order to open scriptproperties.html, the following is required:
1017 +
968 968  * Firefox: On the about:config page, the value of "security.fileuri.strict_origin_policy" has to be changed to "false".
969 -* Chrome: The Chrome launcher has to be started with the command-line parameter --allow-file-access-from-files--
970 -{{/info}}
1019 +* Chrome: The Chrome launcher has to be started with the command-line parameter --allow-file-access-from-files{{/info}}
971 971  
1021 +
1022 +
972 972  This provides you with a complete list of all supported "base keywords" and properties. To filter in this list, you can enter an expression in the text field:
973 973  
974 974  * Enter the beginning of a base keyword
... ... @@ -977,14 +977,26 @@
977 977  * After the dot, you can enter a property name
978 978  * You can also enter a dot (".") as first character to search globally for a property
979 979  
980 -{{info}}
981 -The documentation contains some data types that are no real script data types, but which are useful for documentation purposes. For example, ships and stations are both of datatype "component", but have different properties based on their component class.
982 -{{/info}}
1031 +\\
983 983  
1033 +
1034 +
1035 +{{info}}The documentation contains some data types that are no real script data types, but which are useful for documentation purposes. For example, ships and stations are both of datatype "component", but have different properties based on their component class.{{/info}}
1036 +
1037 +
1038 +
1039 +\\
1040 +
1041 +(% id="md-refreshing-and-patching" %)
1042 +
984 984  = MD refreshing and patching =
985 985  
986 986  When a saved game is loaded, the saved MD state is restored, but also all MD files are reloaded and changes in them are applied to the MD state. This is called "refresh". It is also possible to refresh the MD at run-time using the command "refreshmd" on the in-game command line. This is a convenient way to update MD scripts while the game is already running.
987 987  
1047 +\\
1048 +
1049 +(% id="details-and-restrictions" %)
1050 +
988 988  == Details and restrictions ==
989 989  
990 990  Here are some noteworthy facts about refreshing scripts and cues, and the restrictions:
... ... @@ -1004,164 +1004,144 @@
1004 1004  * Changing instantiate="false" to "true" turns the cue into "waiting" state if it was active or complete before.
1005 1005  * Changing instantiate="true" to "false" removes all instantiated cues and their descendants.
1006 1006  
1007 -{{warning}}
1008 -Be aware that completed instances can be auto-deleted, and so added sub-cues will not become active in such a case.
1009 -{{/warning}}
1070 +\\
1010 1010  
1011 -{{warning}}
1012 -When adding a variable in a new MD script version and using that variable in multiple places, be aware that the variable doesn't exist yet in older savegames. You may have to check the existence of the variable before accessing it, or add some patch logic that initiailses the variable after loading the savegame, if necessary.
1013 -{{/warning}}
1014 1014  
1073 +
1074 +{{warning}}Be aware that completed instances can be auto-deleted, and so added sub-cues will not become active in such a case.{{/warning}}
1075 +
1076 +{{warning}}When adding a variable in a new MD script version and using that variable in multiple places, be aware that the variable doesn't exist yet in older savegames. You may have to check the existence of the variable before accessing it, or add some patch logic that initiailses the variable after loading the savegame, if necessary.{{/warning}}
1077 +
1078 +
1079 +
1080 +\\
1081 +
1082 +(% id="patching" %)
1083 +
1015 1015  == Patching ==
1016 1016  
1017 1017  Cues can have **<patch>** elements with actions that will be performed when an old savegame is loaded. To control which savegames should be affected, you can add a //**version **//attribute to the <cue> node and a //**sinceversion**// attribute in the patch. When a cue is loaded from a savegame that has an older version than //sinceversion//, the <patch> actions will be performed immediately after loading.
1018 1018  
1019 -{{code language="xml"}}
1020 - <cue [...] version="42">
1021 - <conditions> [...] </conditions>
1022 - <actions> [...] </actions>
1023 - <patch sinceversion="42">
1024 - [patch actions]
1025 - </patch>
1026 - </cue>
1027 -{{/code}}
1088 +{{code}}<cue [...] version="42"> <conditions> [...] </conditions> <actions> [...] </actions> <patch sinceversion="42"> [patch actions] </patch></cue>{{/code}}
1028 1028  
1029 1029  The patch actions are only performed if the cue is in a certain state, "complete" by default. Use the //**state**// attribute to change this requirement. For more information, see the XML schema documentation of the <patch> element.
1030 1030  
1031 1031  A sequence of multiple <patch> elements is possible. They will be performed in order of appearance, checking the //sinceversion// and //state// attributes in each case. Patches are also applied to all users of a library and to instances.
1032 1032  
1033 -{{info}}
1034 -The <patch> elements will be ignored when refreshing the MD at run-time. They only affect loaded savegames."
1035 -{{/info}}
1094 +{{info}}The <patch> elements will be ignored when refreshing the MD at run-time. They only affect loaded savegames."{{/info}}
1036 1036  
1096 +
1097 +
1098 +\\
1099 +
1100 +(% id="common-attribute-groups" %)
1101 +
1037 1037  = Common attribute groups =
1038 1038  
1039 1039  There are many commonly used actions and conditions which share groups of attributes. The most important ones are explained here.
1040 1040  
1106 +\\
1107 +
1108 +(% id="categorybroken_macroanchorvalue-comparisons" %)
1109 +
1041 1041  == Value comparisons ==
1042 1042  
1043 1043  There are many conditions and conditional actions that require a value comparison, for example the condition <check_value>:
1044 1044  
1045 -{{code language="xml"}}
1046 - <check_value value="$ware == ware.silicon and $amount != 0"/>
1047 -{{/code}}
1114 +{{code}}<check_value value="$ware == ware.silicon and $amount != 0"/>{{/code}}
1048 1048  
1049 1049  In the value attribute you specify a boolean expression, and if it is true (that is, not equal to zero), the condition is met. This is a special case: This condition and all other nodes that support a value comparison allows you to specify an upper limit, a lower limit, a number range, or a list of allowed values. Examples:
1050 1050  
1051 -{{code language="xml"}}
1052 - <check_value value="FooCue.state" exact="cuestate.complete"/>
1053 - <check_value value="$foo.count" min="5"/>
1054 - <check_value value="$foo" max="player.age + 1min"/>
1055 - <check_value value="player.money" min="300Cr" max="600Cr"/>
1056 - <check_value value="$method" list="[killmethod.hitbymissile, killmethod.collected]"/>
1057 - <check_value value="$attention" min="attention.visible"/>
1058 -{{/code}}
1118 +{{code}}<check_value value="FooCue.state" exact="cuestate.complete"/><check_value value="$foo.count" min="5"/><check_value value="$foo" max="player.age + 1min"/><check_value value="player.money" min="300Cr" max="600Cr"/><check_value value="$method" list="[killmethod.hitbymissile, killmethod.collected]"/><check_value value="$attention" min="attention.visible"/>{{/code}}
1059 1059  
1060 -{{info}}
1061 -Values of most enumeration types cannot be compared via ''min'' or ''max'' (also not via lt, gt, etc.). The only data types that can be used with ''min'' and ''max'' are numbers and the enumeration types ''level'' and ''attention'' (see Boolean operators). The ''exact'' attribute can be used with any type, and is equivalent to using the == operator."
1062 -{{/info}}
1120 +{{info}}Values of most enumeration types cannot be compared via ''min'' or ''max'' (also not via lt, gt, etc.). The only data types that can be used with ''min'' and ''max'' are numbers and the enumeration types ''level'' and ''attention'' (see Boolean operators). The ''exact'' attribute can be used with any type, and is equivalent to using the == operator."{{/info}}
1063 1063  
1122 +
1123 +
1124 +\\
1125 +
1126 +(% id="categorybroken_macroanchorrandom-ranges" %)
1127 +
1064 1064  == Random ranges ==
1065 1065  
1066 1066  If an action requires a value, e.g. when you set a variable to a value, you can have some randomisation. To specify an exact value, e.g. in <set_value>, you can write this:
1067 1067  
1068 -{{code language="xml"}}
1069 - <set_value name="$race" exact="race.teladi"/>
1070 -{{/code}}
1132 +{{code}}<set_value name="$race" exact="race.teladi"/>{{/code}}
1071 1071  
1072 1072  To select a random element from a list, this syntax can be used:
1073 1073  
1074 -{{code language="xml"}}
1075 - <set_value name="$prime" list="[2, 3, 5, 7, 11]"/>
1076 -{{/code}}
1136 +{{code}}<set_value name="$prime" list="[2, 3, 5, 7, 11]"/>{{/code}}
1077 1077  
1078 1078  To get a random number within a given range, you can use min/max:
1079 1079  
1080 -{{code language="xml"}}
1081 - <set_value name="$foo" min="-20" max="20"/>
1082 - <set_value name="$timeout" max="20s"/>
1083 -{{/code}}
1140 +{{code}}<set_value name="$foo" min="-20" max="20"/><set_value name="$timeout" max="20s"/>{{/code}}
1084 1084  
1085 1085  min and max have to be compatible number types. Enumeration types are not allowed, not even level and attention. The min attribute is optional and defaults to 0 (of the number type used in max).
1086 1086  
1087 1087  You can select one of 5 different probability distribution profiles for the random range, "flat" being the default (all values in the range are equally likely). If you select another profile, e.g. "increasing" to make higher numbers more likely, you also have to specify a scale value (integer) that is greater or equal to 2. Higher scale values result in higher peaks in the distribution profiles (probable values become even more probable).
1088 1088  
1089 -{{code language="xml"}}
1090 - <set_value name="$foo" min="-20" max="20" profile="profile.increasing" scale="4"/>
1091 -{{/code}}
1146 +{{code}}<set_value name="$foo" min="-20" max="20" profile="profile.increasing" scale="4"/>{{/code}}
1092 1092  
1148 +(% style="color: rgb(0,0,255);text-decoration: none;" %)
1149 +\\(% id="variables-and-namespaces" %)
1150 +
1093 1093  = Variables and namespaces =
1094 1094  
1095 1095  As you have seen above, you can easily access variables by writing their name (including $ prefix) in an expression. Namespaces define in which cue the variables are actually stored (and from which cue they are read).
1096 1096  
1155 +(% style="color: rgb(0,0,255);text-decoration: none;" %)
1156 +\\\\\\(% id="categorybroken_macroanchorcreating-and-removing-variables" %)
1157 +
1097 1097  == Creating and removing variables ==
1098 1098  
1099 -You can create variables with certain actions and conditions, such as the <set_value> action:
1160 +{{{You can create variables with certain actions and conditions, such as the <set_value> action:}}}
1100 1100  
1101 -{{code language="xml"}}
1102 - <set_value name="$foo" exact="$bar + 1" />
1103 -{{/code}}
1162 +{{code}}<set_value name="$foo" exact="$bar + 1" />{{/code}}
1104 1104  
1105 1105  <set_value> also exists as a "condition", which can be useful if you want to pass information about the conditions to the actions, that would otherwise be lost - like in a complex <check_any> event condition, where you want to create a variable only if you are in a certain check branch. (Other pseudo-conditions are <remove_value> and <debug_text>.)
1106 1106  
1107 -The default operation of <set_value> is "**set**", but there are more: "**add**", "**subtract**", and "**insert**". //add// and //subtract// change the value of an existing variable, which is created as 0 if it didn't exist before. If neither //min//, //max// nor //exact// attribute is provided, an exact value of 1 is assumed.
1166 +The default operation of <set_value> is "**set**", but there are more: "**add**", "**subtract**", and "**insert**". //add// and //subtract// change the value of an existing variable, which is created as 0 if it didnΓÇÖt exist before. If neither //min//, //max// nor //exact// attribute is provided, an exact value of 1 is assumed.
1108 1108  
1109 -{{code language="xml"}}
1110 - <set_value name="$foo" operation="add" />
1111 -{{/code}}
1168 +{{code}}<set_value name="$foo" operation="add" />{{/code}}
1112 1112  
1113 1113  The trick is that <set_value> not only works on variables, but also on list elements and table keys:
1114 1114  
1115 -{{code language="xml"}}
1116 - <set_value name="$list.{1}" exact="42" />
1117 - <set_value name="$table.$foo" exact="42" />
1118 -{{/code}}
1172 +{{code}}<set_value name="$list.{1}" exact="42" /><set_value name="$table.$foo" exact="42" />{{/code}}\\
1119 1119  
1120 1120  The operation //insert// is special, and it only works on lists. It inserts the value at the specified position (note that the position beyond the last element is also valid here):
1121 1121  
1122 -{{code language="xml"}}
1123 - <set_value name="$list.{1}" exact="42" operation="insert" />
1124 -{{/code}}
1176 +{{code}}<set_value name="$list.{1}" exact="42" operation="insert" />{{/code}}
1125 1125  
1126 1126  This shifts the positions of all following elements up by one. If min/max/exact are missing, the default value is null for insertions, not 1 like in other cases.
1127 1127  
1128 1128  Appending is easier than that. The following actions are equivalent:
1129 1129  
1130 -{{code language="xml"}}
1131 - <set_value name="$list.{$list.count + 1}" exact="42" operation="insert" />
1132 - <append_to_list name="$list" exact="42" />
1133 -{{/code}}
1182 +{{code}}<set_value name="$list.{$list.count + 1}" exact="42" operation="insert" /><append_to_list name="$list" exact="42" />{{/code}}
1134 1134  
1135 1135  Inserting at a position below 1 or above $list.count + 1 is not possible.
1136 1136  
1137 1137  To remove variables or list/table entries, use <remove_value>:
1138 1138  
1139 -{{code language="xml"}}
1140 - <remove_value name="$foo" />
1141 - <remove_value name="$list.{1}" />
1142 - <remove_value name="$table.$foo" />
1143 -{{/code}}
1188 +{{code}}<remove_value name="$foo" /><remove_value name="$list.{1}" /><remove_value name="$table.$foo" />{{/code}}\\
1144 1144  
1145 1145  Removing an entry from a list shifts all following elements down by one. If you want to clear an entry without removing it from the list, just use <set_value> instead.
1146 1146  
1192 +(% style="color: rgb(0,0,255);text-decoration: none;" %)
1193 +\\\\\\(% id="accessing-remote-variables" %)
1194 +
1147 1147  == Accessing remote variables ==
1148 1148  
1149 1149  You can also read and write variables in other cues by using the variable name as property key:
1150 1150  
1151 -{{code language="xml"}}
1152 - <set_value name="OtherCue.$foo" min="0.0" max="1.0" />
1153 - <set_value name="md.OtherScript.YetAnotherCue.$bar" exact="OtherCue.$foo" />
1154 -{{/code}}
1199 +{{code}}<set_value name="OtherCue.$foo" min="0.0" max="1.0" /><set_value name="md.OtherScript.YetAnotherCue.$bar" exact="OtherCue.$foo" />{{/code}}
1155 1155  
1156 1156  Instead of referencing a cue by name, you could also reference it via a keyword or another variable:
1157 1157  
1158 -{{code language="xml"}}
1159 - <set_value name="static.$counter" operation="add" />
1160 - <set_value name="parent.$foo" exact="42" />
1161 - <set_value name="this.$bar" exact="parent" />
1162 - <set_value name="$baz" exact="this.$bar.$foo" />
1163 -{{/code}}
1203 +{{code}}<set_value name="static.$counter" operation="add" /><set_value name="parent.$foo" exact="42" /><set_value name="this.$bar" exact="parent" /><set_value name="$baz" exact="this.$bar.$foo" />{{/code}}
1164 1164  
1205 +(% style="color: rgb(0,0,255);text-decoration: none;" %)
1206 +\\\\\\(% id="namespaces" %)
1207 +
1165 1165  == Namespaces ==
1166 1166  
1167 1167  In the examples above, a variable was written to and read from the "this" cue. This can be necessary: the expression "$foo" may be different from the expression "this.$foo". The reason for that are namespaces.
... ... @@ -1168,24 +1168,16 @@
1168 1168  
1169 1169  Consider this case:
1170 1170  
1171 -{{code language="xml"}}
1172 -<cue name="Root">
1173 - <actions>
1174 - <set_value name="$foo" />
1175 - </actions>
1176 - <cues>
1177 - <cue name="SubCue"> [...]
1178 - </cue>
1179 - </cues>
1180 -</cue>
1181 -{{/code}}
1214 +{{code}}<cue name="Root"> <actions> <set_value name="$foo" /> </actions> <cues> <cue name="SubCue"> [...] </cue> </cues></cue>{{/code}}
1182 1182  
1183 -When the root cue creates $foo, the variable is stored in the Root cue directly. But SubCue and its descendants will also need access to $foo. Of course they could write "parent.$foo" or "Root.$foo", but since it's very common to have a single location for most variables in the whole cue tree, the easy solution is to write just "$foo" - because variable names are looked up in the **namespace cue**, which is the root by default. Also newly created variables end up in the namespace, and not in "this" cue.
1216 +When the root cue creates $foo, the variable is stored in the Root cue directly. But SubCue and its descendants will also need access to $foo. Of course they could write "parent.$foo" or "Root.$foo", but since itΓÇÖs very common to have a single location for most variables in the whole cue tree, the easy solution is to write just "$foo" - because variable names are looked up in the **namespace cue**, which is the root by default. Also newly created variables end up in the namespace, and not in "this" cue.
1184 1184  
1185 1185  You can also use the keyword "**namespace**" in expressions to get the namespace cue.
1186 1186  
1187 -=== Defining a cue's namespace ===
1220 +(% id="defining-a-cues-namespace" %)
1188 1188  
1222 +=== Defining a cueΓÇÖs namespace ===
1223 +
1189 1189  When writing a cue, you can specify what the namespace of the cue should be, by adding the //**namespace**// attribute. The following values are possible:
1190 1190  
1191 1191  * **this**: Use "this" cue as namespace, even for instances: $foo == this.$foo
... ... @@ -1192,13 +1192,9 @@
1192 1192  * **static**: Same as "this", but when instantiated, use the static cue: $foo == static.$foo
1193 1193  * **default**: The namespace is inherited from the parent cue. The default for root cues and for libraries is the same as "static".
1194 1194  
1195 -{{warning}}
1196 -Although in general the expression "$foo == namespace.$foo" is true, there is one exception: When library parameters are evaluated in the referencing cue, variables are resolved using the parent's namespace. However, the referencing cue creates a new namespace, so the namespace keyword already points to the library, not to the parent's namespace. Example:
1230 +(% style="color: rgb(0,0,255);text-decoration: none;" %)
1197 1197  
1198 -{{code language="xml"}}
1199 -<cue name="LibRef" ref="Lib">
1200 - <cke:param name="Param1" value="$foo" ></cke:param> <!-- $foo from parent namespace -->
1201 - <cke:param name="Param2" value="namespace.$foo" ></cke:param> <!-- LibRef.$foo (error) -->
1202 -</cue>
1203 -{{/code}}
1204 -{{/warning}}
1232 +
1233 +{{warning}}Although in general the expression "$foo == namespace.$foo" is true, there is one exception: When library parameters are evaluated in the referencing cue, variables are resolved using the parentΓÇÖs namespace. However, the referencing cue creates a new namespace, so the namespace keyword already points to the library, not to the parentΓÇÖs namespace. Example:
1234 +
1235 +<code><cue name="LibRef" ref="Lib"> <param name="Param1" value="$foo" /> <!-- $foo from parent namespace --> <param name="Param2" value="namespace.$foo" /> <!-- LibRef.$foo (error) --></cue></code>{{/warning}}
Mission Director Guide - Instantiation.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.Daniel
Size
... ... @@ -1,1 +1,0 @@
1 -47.0 KB
Content